
Group Theory-based Optimization Algorithm
(GTOA)

----based on Genetic Algorithm

Zhang Zichao

Genetic Algorithm

In some optimization problem, the feasible solutions are
vectors with a known length, and the i-th components are in {0,
1, … ,mi}, in which mi is an integer. Our aim is to find a solution
with quality as high as possible, and the quality (an integer) is
easy to calculate.

In this case, we can think the vectors (with the known length)
as chromosomes and think the components as genes.

Genetic Algorithm

First, generate some vectors (chromosomes) randomly (or in
another way) with a number NP. These are the first generation.

Then, select a part of them to do the next operations.

Genetic Algorithm

For the selected vectors, do crossover to generate new
vectors. Usually, there are several input vectors and one or
more output vectors. The input vectors can be selected
randomly or in another way.

For the generated vectors in the previous step, do mutation
operation.

Genetic Algorithm

Up to now, the main steps of generating one generation has
been completed. However, there may be infeasible vectors in
the generation, so we need to repair them. Usually, we use
some simple algorithms (such as greedy algorithm).

Repeat these steps until reaching the stopping condition,
and choose the vector with the highest quality (fitness) to be
the optimal solution.

Genetic Algorithm

Some ingredients in genetic algorithm:
⚫ Encoding mode
⚫ First generation
⚫ Select operator
⚫ Crossover operator
⚫ Mutate operator
⚫ (Greedy) Repaire operator
⚫ (Greedy) Optimize operator
⚫ Fitness
⚫ Stopping condition

Group Theory-based Optimization Algorithm
(GTOA)

•GTOA can be used in problems whose solutions (vectors) are
with components in different ranges.
•We Implementated GTOA in three different knapsack
problems: SUKP, D{0-1}KP, BKP. The main difference of the
three algorithms (for the three problems) is the encoding mode.

Group Theory-based Optimization Algorithm
(GTOA)

•SUKP: All components are 0 or 1.
•D{0-1}KP: All components are 0, 1, 2 or 3.
•BKP: The i-th components is in {0, 1, … , mi}, in which mi can
be all different integers.
•Besices, there are some other differences, such as the
definitions of fitness, the repair operators, and even the max
iteration times.

An Introduction of BKP

There are n types of objects. The i-th type is with profit pi and
weight wi. The number (bound) of the i-th type objects is bi.

We have a knapsack, and the total weight we can put in is limited.
Our aim is to put in objects with profit as high as possible.

We can use a vector with length n, each components of which is
the number of each object we put in, to represent the solutions.

GTOA for BKP

•First generation: All components are a random integer in their
ranges.
•Select operator: /
•Crossover operator:
input: X1, X2, X3 (selected randomly)
output: Y=X1+F(X2-X3), and F is a random vector in {-1, 0, 1}n

(Regard the i-th components as elements in Zmi+1, then [xi]=[xi+mi+1]
for all xi∈ Z)

GTOA for BKP

•Mutate operator: (Parameter pm is the probability for each
component to change)
For each component xi, it change to -xi (equivalent to mi+1-xi)
for probability pm/2, and change to a random number not
equivalent to xi for probability pm/2, else don’t change.

GTOA for BKP

•Repair operator: (Suppose X is the input vector)
Sort all elements in profit per weight, such that
p0/w0≥p1/w1≥...≥pn-1/wn-1.
for i=0 to n-1
If the i-th element of number xi can not be put in, then let xi be

the max amount that the i-th element can be put in, and
xi+1=...=xn-1=0.
end for

GTOA for BKP

•Optimize operator: (Suppose X is the input vector)
Sort all elements in profit per weight, such that
p0/w0≥p1/w1≥...≥pn-1/wn-1.
for i=0 to n-1
Let xi be as large as possible, such that xi≤mi, and the weight

doesn’t exceed the limit.
end for

GTOA for BKP

•Exactly, the repair operator and the optimize operator is
implemented together, in just one operator.
•Fitness: Equals the total profit.
(For the i-th vector in the new generation, compare the fitness
of the new generated vector and the i-th vector in the previous
generation, and put the larger one into the new generation.)

GTOA for BKP

•Stop condition: When the iteration times reach the value MIT
(max iteration times) =”length of X” * 2, stop.

GTOA for D{0-1}KP

•First generation: All components are a random integer in {0, 1,
2, 3}.
•Select operator: /
•Crossover operator: Similar to BKP.
•Mutate operator: Similar to BKP.

GTOA for D{0-1}KP

•Repair operator, optimize operator: Similar to BKP, but the
definition of “profit per weight” is a little different.
•Fitness: Also equals to the total profit.
•Stop condition: Also when the iteration times reach MIT, but
now MIT=length * 12.

GTOA for SUKP

•First generation: All components are 0 or 1 randomly.
•Select operator: /
•Crossover operator: Similar to BKP: Y=X1+F(X2-X3), regarding
all components as residual class. Since all components are 0 or
1, the equation is equivalence to Y=X1 xor (F and (X2 xor X3)),
which is simpler.

GTOA for SUKP

•Mutate operator: For probability pm, xi=1-xi.
•Repair operator, optimize operator: Similar to BKP, but the
definition of “profit per weight” is a little different.
•Fitness: Also equals to the total profit.
•Stop condition: Also when the iteration times reach MIT, but
MIT=max{item amount, element amount}.

Group Theory-based Optimization Algorithm
(GTOA)

The whole algorithm:
Generate NP vectors randomly
in gen[NP][length]
for ch_th=0 to NP-1
repair gen[ch_th]

end for
for it=0 to MIT-1
for ch_th=0 to NP-1
Y=X1+F(X2-X3)
mutate(Y)

repair(Y)

if fit(Y)>fit(gen[ch_th])

new_gen[ch_th]=Y

else

new_gen[ch_th]=gen[ch_th]

end for

gen=new_gen

end for

Group Theory-based Optimization Algorithm
(GTOA)

I have implemented GTOA and EGA in C language, compiled
with clang, running in Debian. Compare to EGA (modified
according to specific problems, so may not be standard EGA),
GTOA has better convergence speed and can give solutions
with larger fitness.

